
Dunstan Thomas Consulting Limited is part of the Dunstan Thomas Group of companies.

Integrating Decision Tables
with State Machines using
Enterprise Architect
Phil Chudley – Principal Consultant

20 October 2022

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

2

Contents

Contents ... 2

1 Introduction .. 3

1.1 Pre-Requisites .. 3

1.2 The Example ... 3

2 Workflow .. 4

3 Worked Example .. 5

3.1 Model the Business Rules as a DMN .. 5

3.2 Creating Data Sets for the Decision Table .. 16

3.3 Running a Simulation .. 20

3.4 Generating the Java Classes for the Decision Table ... 21

3.5 Creating a Java Based Executable State Machine .. 24

3.6 Integrating the Decision Table and the State Machine .. 29

3.6.1 Add Public Attributes to the Java Class.. 30

3.6.2 Add the Public Operation for Invoking the DMN ... 31

3.6.3 Add a Public Operation to Invoke the Operation .. 31

3.6.4 Bind an Operation to the DMN Simulation .. 32

3.6.5 Add Java Code to the Bound Operation ... 33

3.6.6 Adding a Behaviour Operation in the State Machine 35

3.6.7 Set the Run State for the Property Instance ... 36

3.7 Run the Simulation.. 37

3.8 IMPORTANT Gotcha .. 40

4 What to do Next ... 41

5 Conclusion ... 44

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

3

1 Introduction
Sparx Systems Enterprise Architect (EA) supports the modelling, simulation and code

generation for decision tables (DMN) and state machines (ESM).

This document provides a step-by-step guide on:

• How to model DMN, simulate, and generate Java code.

• How to model ESM, simulate, and generate Java code.

• How to integrate a DMN and ESM together using a Java Class.

1.1 Pre-Requisites

• To model, simulate and integrate DMNs and ESMs the complete Java Development

Kit (JDK) must be installed on the same workstation as EA. The JDK is available free

of charge from Java Downloads | Oracle.

• A perspective containing the following MDGs must be created and active:

• Set the Code Engineering to Java:

1.2 The Example

For this document the example used will be a simplified car insurance quotation, where the

business rules for determining the insurance premium will be modelled using a DMN, and

the process of obtaining a quote will be modelled using an ESM which will invoke the DMN

to obtain the premium,

The business rules (fictitious and not representative of actual insurance premiums) for this

example are as detailed in the table below:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/
https://www.oracle.com/java/technologies/downloads/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

4

2 Workflow
The workflow for creating an integrated DMN and ESM consists of the following steps:

1) Model the business rules as a DMN model.

2) Test the DMN model using multiple datasets.

3) Generate the DMN using the Java language.

4) Create a Java class to integrate (via an operation) with the DMN.

5) Generate the Java source code for this class.

6) Add a State Machine to this Java Class.

7) Add an Executable State Machine (ESM) artefact element to the model.

8) Add an instance (property) of the Java class to the ESM element.

9) Set the run-state of this instance.

10) Test the State Machine.

11) Add an invocation to an operation defined in step 4) to at least one state in the State

Machine model.

12) Test the State Machine.

13) Either:

a. Modify the run-state values to test a different set of business rules, and repeat

for other business rules.

Age
Car Type
(Saloon, SUV, Sports)

NCD
Offences
(Yes / No)

Premium

17 to 25

Saloon

0

No

500.00

1 to 4 450.00

5 to 8 400.00

SUV

0 600.00

1 to 4 550.00

5 to 8 500.00

Sports

0 700.00

1 to 4 650.00

5 to 8 600.00

Saloon

0

Yes

700.00

1 to 4 650.00

5 to 8 600.00

SUV

0 800.00

1 to 4 750.00

5 to 8 700.00

Sports

0 900.00

1 to 4 850.00

5 to 8 800.00

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

5

or

b. Add multiple instances (properties), one for each set of business rules, to the

ESM artefact and add multiple invocations of the operation defined in step 4)

to at least one state in the State Machine Model.

3 Worked Example
In this section a worked example is presented using the business rules as presented in

section 1.2

3.1 Model the Business Rules as a DMN

In EA the DMN 1.2 MDG provides multiple ways of modelling business rules, but every DMN

model must have the following:

• The data (parameters) to be used as input to the decision table.

• The decision table.

• A DMNSimConfiguration element.

The elements above are provided in a toolbox within the DMN MDG DMNDiagram.

The following steps are required:

1) If necessary, create a new local EA project.

2) Create a repository structure like that shown below:

3) To the package named Business Rules (Decision Table) add a DMNDiagram

4) Using the diagram toolbox add Item Definition elements such that there is one Item

Definition element for each input to the Decision Table, plus one extra Item

Definition element will “own” the other Item Definition elements:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

6

NOTE

These can be named anything you like, and the names can included spaces, but I prefer to

not use spaces in the names, prefix the “owning” element with t and name all other elements

to correspond with the inputs as per the business rules defined (in this example) in section

1.2

5) IMPORTANT structure the elements above in the Browser to reflect the “ownership”

as shown below:

6) These elements are not required on the diagram and can be deleted if you wish.

7) Using the diagram toolbox add an Input Data element to the diagram. I usually name

this element to be the same as the “owning” Item Definition element but without the t

prefix:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

7

8) IMPORTANT Bind the Input Data element to the “owning” Item Definition element,

by:

a. Double-clicking the Input Data element to open the DMN Expression

window:

b. Click the toolbar icon Set Item Definition:

c. Using the Navigation Window display, navigate to and select the “owning”

Item Definition element named, in this example, tQuotationData:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

8

d. Click the icon Open Item Definition:

 This will change the DMN Expression window to:

e. Set the type for each data item, by right clicking the data item and selecting

the type from the drop down menu.

f. For a data item that can be one of a set of values (enumeration) enter the

permitted values in the last column.

NOTE

String values must be surrounded by double-quotes.

g. Save the changes, by clicking the Diskette toolbar icon.

9) In this example the decision table will be modelled using a Business Knowledge

Model element. Add a Business Knowledge Model element to the diagram, select

Decision Table from the menu and give an appropriate name such as Quotation

Calculation. Once added to the diagram the DMN Expression window will display

an empty decision table:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

9

a. Using the Add Input toolbar icon add two more input columns:

b. Using the Edit Parameters toolbar icon, set the parameters these names

must be the same as the “owned” Item Definition elements created

earlier as shown below:

c. Change the names of the input / output columns to correspond to these input

parameters (as you begin to type in an input column, you will see EA

present a suggested name which you can then select), for an output column

just type a name.

d. Right-click in the columns named CarType and Offences and select the type

string from the drop-down list

e. For string enumerations (CarType and Offences) in our example, enter

these values below (as you start to type you should see a suggestion from

EA, which you should select) in section below the input column header:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

10

f. Now the laborious part, using the Business Rules defined in section 1.2

complete each row of the decision table. Extra rows can be added by

selecting the Add Rule toolbar icon:

g. Save the changes by clicking the Diskette toolbar icon.

h. Optionally, you can merge cells by selecting Merge All from the menu

displayed when selecting the Merge Cells toolbar icon. This can be reversed

(unmerged) by selecting Unmerge All from the menu displayed by selecting

the next toolbar icon (to the right) of the one shown below, so you can restore

to non-merged cells if you wish.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

11

10) Add a Decision Element and choose Invocation from the menu from the toolbox to

the diagram, in this example a suitable name is Quotation.

11) Using the Quicklink create an Information Requirement relationship from the Input

Data element named QuotationData to the newly created Decision Element.

12) Similarly using the Quicklink create a Knowledge Requirement relationship from the

Business Knowledge Model element named Quotation Calculation to the newly

created Decision Element.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

12

13) IMPORTANT Bind together the Decision element and the Business Knowledge

Model element by:

a. Double-click the Decision element named Quotation to open the DMN

Expression window.

b. Click the Set Business Knowledge icon

c. If necessary, navigate to and select the BusinessKnowlegdeModel in this

example it is named Quotation Calculation.

d. Click OK

14) IMPORTANT Bind together the Decision element and the Input Data element by:

a. Click in the text area adjacent to one of the input parameters listed and select

Edit Expression…

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

13

NOTE

The tab named FEEL is used for direct simulation and testing of the DMN model within EA.

The remaining tabs are completed if the DMN is to be generated to code, for example Java.

b. The syntax for the FEEL entry is InputData element name . Parameter

Name

c. The syntax for Java is InputData element name.Parameter name

15) Validate the Decision Table by:

a. Selecting the BusinessKnowledgeModel element named Quotation

Calculation.

b. Clicking the Validation icon in the toolbar:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

14

c. The decision table will be validated, and the results shown in the System

Output tab:

NOTE

In this example the validation provides two warnings regarding possible missing rules. In this

example these missing rules are not important, but in other examples you may need to add

the missing rules.

Other validation errors are syntax errors, for example entering [17.25] instead of [17..25]

result in an error.

Warnings can be ignored. Errors must be corrected.

16) Using the diagram toolbox add a Simulation Configuration element to the diagram

and give this element a suitable name, for example, Quotation Calculation.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

15

17) Bind this Simulation Configuration element to the Package containing the

elements created so far:

a. Double-click the Simulation Configuration element

b. Click the Configure Package toolbar icon:

c. Select the Package (in this example the Package named Business Rules

(Decision Table) in the Select Package dialog:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

16

d. Click OK.

e. Select Quotation (the name of the Decision element) from the drop-down list

in the DMN Simulation window:

f. The entry for the Input data element named Quotation is shown with the

value Default. This refers to the Data Set that will be used to run the

simulation. Each Input Data element has a Default data set which cannot be

deleted but can be copied to create multiple data sets for simulation. This

process is described in the next section.

3.2 Creating Data Sets for the Decision Table

Before generating any code for the decision table, it should be tested to ensure all is working

correctly.

A simulation requires an input data set that belongs to the Input Data element.

The recommended approach is:

• Copy the Default data set

• Assign values to all input parameters that will test a rule.

• Repeat this process to test as many rules as required.

In this example we will create the data sets (the data set name corresponds to the rule

number in the decision table that is to be tested) as detailed in the table below:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

17

Data Set Name Age CarType NCD Offences Expected Result

Rule 2 20 Saloon 2 No 450.00

Rule 6 20 SUV 6 No 500.00

Rule 7 20 Sports 0 No 700.00

Rule 11 20 Saloon 2 Yes 650.00

Rule 15 20 SUV 6 Yes 700.00

Rule 16 20 Sports 0 Yes 900.00

To create a Data Set for each row in the table above:

1) Double-click the Input Data element named QuotationData

2) Click the Edit Data Set toolbar icon:

3) Copy the Default data set by:

a. Selecting the Default data set.

b. Click the Duplicate icon in the toolbar:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

18

4) Name the data set and enter values for each input parameter using the table above:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

19

NOTE

If there has been a selection defined, for example, the CarType, then a value can be

selected from a drop-down list.

5) Repeat steps 4) and 5) for each row of the table above. You can either copy the

Default data set or a data set that you have created.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

20

6) Click OK

3.3 Running a Simulation

Now that we have created the Decision table, bound all the elements together and defined

input data sets, we can run a simulation to test the decision table.

To run a simulation, use the following steps:

1) Decide which data set to use for the simulation, for example Rule 2.

2) Note the expected value, in this example 450.

3) Double-click the Simulation Configuration element.

4) Select Rule 2 from the drop-down in the DMN Simulation window:

5) Click the Simulation toolbar icon:

6) The simulation will run, and the results shown:

We can verify the correct result by observing the red text adjacent to each element. The text

adjacent to the Input Data element is the data set used in the simulation, the other red text

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

21

is the result after evaluating the decision table rules. Comparing the result against the

expected result, we can verify that the decision table is correct.

7) End the simulation by clicking the Stop Simulation icon in the toolbar:

8) Repeat the steps above for each data set to verify that each data set produces the

expected result.

3.4 Generating the Java Classes for the Decision Table

Once the decision table has been tested using simulation and data sets, Java code can be

generated using the following steps:

1) Double-click the Simulation Configuration element named Quotation Calculation

2) Click the section named Generate Module

3) Select Java as the language from the drop-down list:

4) Note the Package and Name. This follows typical Java reverse domain name

convention, and the Module Path MUST refer to a file structure that matches this

reverse domain name. Therefore, use Windows File Explorer to create folders to

reflect this structure. Although these folders could be created anywhere, I usually

create them as child folders within the folder where my EA repository is located:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

22

5) Using the … navigate button, set the Module Path to the dmn folder created above:

6) Generate the code using the Generate Code icon in the toolbar:

7) You may see the following error message in the System Output window:

8) If you do, then follow the instructions and define JAVA_HOME to refer to the

package where you have installed the JDK. For example:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

23

9) Repeat step 6) and check in the System Output window that all generated and

compiled OK:

EA Gotcha and TIP

If you get any build errors, these are likely due to typos when entering the Java expression

when binding the Decision element to the Input Data. (Section 3.1 step 14).

You can correct this of course, BUT gotcha you still get build errors! The changes have not

been applied when the decision table code is generated.

The work around, is save all diagrams, close the repository and then re-open the

repository.

That should solve the problem, and all should build OK.

This has caught me out several times.

If you are curious you can examine he source code generated, not shown here, by clicking

the View Code icon in the toolbar.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

24

3.5 Creating a Java Based Executable State Machine

The next step is to create a simple Java based executable state machine (ESM).

The steps involved should be familiar especially if you have model state machines in EA

before.

For the example in this document, we do not require a very complex state machine and the

following steps are used:

1) Create a Package named Class and State Machine using the Package named Car

Insurance Quotation as the Parent.

2) Add a UML Class diagram to this Package and choose a suitable name for the

diagram, for example, Java Class

3) Using the diagram toolbox and a Java class (a Class with its language property set

to Java) to the diagram. Enter a suitable name for the class (do not put spaces in the

class name). A suitable name in this example is Driver. At this point, no attributes or

operations are required. These will be created in the section 3.6

4) Right-click the class in the Browser and choose Add -> State Machine from the

menu. The default name of State Machine is fine for this example. The child state

machine will be created and the diagram for the state machine will be opened.

5) Create the following simple state machine:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

25

We now need to make this state machine a Java based ESM. The following steps are used:

1) In the package named Class and State Machine create a UML Class Diagram

named State Machine Simulation.

2) Using the Artefacts page in the diagram toolbox add to this diagram an Executable

StateMachine Artefact. Name this element QuotationApplication:

3) Drag the class named Driver onto this Executable StateMachine Artefact element

and drop as a Property. Do NOT drop as a link. Name this property Example1:

We can Build and Run the state machine to simulate it and ensure all the transitions work

correctly between the various states. The following steps are used:

1) Select the Executable StateMachine artefact.

2) Select Generate, Build and Run from the Statemachine drop-down menu, in the

Executable States section of the Simulate ribbon. The following dialog will be

displayed:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

26

4) Using the navigate button … navigate to and select the same parent folder as where

the generated DMN code is located:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

27

5) Click Generate the Java code will be generated, built and the state machine

simulation started:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

28

NOTE

The name of the Java class property instance is shown in red next to the Initialising state.

6) Select Open Simulation Window from the Simulation drop-down menu, in the

Dynamic Simulation section of the Simulate ribbon:

NOTE

The Simulation window displays Waiting for Trigger, BUT unlike simulating a State

Machine using Javascript, a list of Triggers is NOT displayed. This can be verified by

selecting Events in the Dynamic Simulation section of the Simulate ribbon.

How to fire a trigger in a Java based ESM simulation puzzled me for a long time until I found

the solution. Which is:

In the Simulation Window there is text field below the toolbar. To fire a trigger, enter

broadcast tigger name or

send trigger name to instance name

and press Enter

This will fire the trigger, repeat this process to test all transitions.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

29

7) In the Simulation Window enter the command broadcast GO

The state machine has transitioned correctly to state Applying.

8) In the Simulation Window enter the command broadcast BACK to return to the

state Initialising.

9) Finally, to end the simulation test, In the Simulation Window enter the command

broadcast QUIT to end the simulation.

TIP

You can use the up and down arrow keys on the keyboard to scroll through the broadcast

commands that have been entered during this simulation.

3.6 Integrating the Decision Table and the State Machine

Now that we have a working Decision Table in Java and an ESM also in Java, we can

integrate them using the following workflow:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

30

1) Add public attributes to the Java class that correspond with the input data within the

data sets used to test the decision table, plus public attribute(s) that correspond to

the result(s) returned from the decision table.

2) Create a public operation to the Java class which will call an operation that has been

generated within the Decision table Java classes. This operation will return the result

from the decision table.

3) Create a public operation that will call the operation defined in 2) above and set the

result in an attribute defined in 1) above.

4) Add code to this operation to call the operation defined in 2) above and store the

returned value in a suitable attribute,

5) Bind operation created in step 2) to DMN Simulation element(s).

6) Add Java code to this operation, that will:

a. Set data in the Java code for the Decision Table

b. Call the operation defined in the Java code for the decision table

c. Return the result from the decision table

7) Add a call to the operation defined in step 4) above, within a state do behaviour.

8) Set the run state of the property instance for the class to be the values in one of the

input data sets used to simulate the decision table.

9) Ensure the Local Variables window is visible.

10) Generate, Build and Run the ESM, fire triggers and observe the values in the local

variables.

3.6.1 Add Public Attributes to the Java Class

First an explanation as to why the attributes are defined as public rather than private. The

answer is simple, we need public attributes so that the run state of the Java property

instance can be set. If private attributes are used, the Java class for the state machine

simulation will fail to compile.

Attributes are added in the usual manner using the Features window. I have found that the

following type mapping works between the Decision table and the Java types:

Decision table type Number – maps to Java double type

Decision table type String – maps to Java String type

NOTE

I have not tried other decision table types, for example Boolean, but I would guess this

would map to the Java type bool. Similarly for the other decision table types.

From our decision table we require Java attributes for:

• Age

• Car Type

• NCD

• Offences

• Premium

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

31

3.6.2 Add the Public Operation for Invoking the DMN

Any name can be used, but the operation must have parameters that correspond to the data

inputs for the decision table and return a value which corresponds to the result of the

decision table.

3.6.3 Add a Public Operation to Invoke the Operation

The operation can be added in the usual manner, and once created:

1) Open the Properties window for this operation

2) Select Code

3) Enter the code for the operation, for example:

premium = ApplyForInsurance(age, carType, ncd, offences);

4) Click Save

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

32

3.6.4 Bind an Operation to the DMN Simulation

This is the heart of the integration and is performed using the following steps:

1) Re-use as a Link the DMNSimConfiguration element from the Decision Table

model on the Java Class diagram:

2) Using the Quicklink create a Dependency relationship from the Java Class to the

DMNSimConfiguration element. The following dialog will be displayed:

3) Select the operation that will invoke the DMN code, in this example,

ApplyForInsuranceQuote in the list of Features.

4) Click OK. This will bind the selected operation to the DMN simulation:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

33

3.6.5 Add Java Code to the Bound Operation

The code entered for this operation, in theory, can be any valid Java code. But at least the

following must be included:

• The values in each parameter must be stored in variables declared within the Java

classes generated for the decision table.

• The correct method within the Java classes generated for the decision table must be

called.

The challenge is what classes, what variables and what method must be used?

According to the Sparx documentation, all of these is available using code complete. Whilst

this may be true for Javascript based ESMs, (I haven’t verified this), it is only partially true

for Java based ESMs.

I have found the following steps work:

1) Select the operation that is bound to the DMNSimConfiguration element and open

its Properties window.

2) Select Code.

3) Enter assignment statements, one per operation parameter using the following

syntax:

Java Class for the DMNSimConfiguration.Java Class Name for the Data Input Element.Data

Item Name.

An example should make more sense of this:

Referring to the models created so far:

In our example the name of the DMNSimConfiguration element is Quotation Calculation,

so the Java class name is Quotation_Calculation. This is available via code complete.

In our example the name of the Data Input element is QuotationData, so the Java class

name is QuotationData. This is not available via code complete.

The names of the Data Items are Age CarType, NCD and Offences. These are the names

used in the Java class. These are not available via code complete.

Hence the statements to store the parameter data from the operation to these Data Items

are:

Quotation_Calculation.QuotationData.Age = age;
Quotation_Calculation.QuotationData.CarType = carType;
Quotation_Calculation.QuotationData.NCD = ncd;

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

34

Quotation_Calculation.QuotationData.Offences = offences;

TIP

To use code complete press Ctrl + Space and you will see a list of valid entries. Once a

class is selected from this list, entering . will display a valid list of operations. (Usually only

one since a decision table usually returns one value. I assume for decision tables that return

multiple values, there will be one operation for each result returned).

In our example we simply need to call the operation that returns the result from the Decision

Table. This is available using code complete. The completed code for the operation is:

return Quotation_Calculation.Get_Quotation();

Do not forget to Save the code

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

35

3.6.6 Adding a Behaviour Operation in the State Machine

The next piece of the DMN / ESM integration is to add a behaviour operation, for example

do to a state.

In our state machine:

We will add a do behaviour to the state Applying using the following steps

1) Select the state Applying

2) Right-click and select Features -> Operations… from the menu:

3) Enter a name for the do operation, for example Apply

4) Select this operation and open the Properties window and select Code

5) Enter the code that will call the method named GetAQuote() created earlier in our

Java class that owns the state machine as shown below:

this.GetAQuote();

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

36

NOTE

The keyword this must be used to invoke the method. This refers to the Property instance

added to the executable statemachine element.

3.6.7 Set the Run State for the Property Instance

Our state machine simulation needs data, just as did our decision table simulation. This data

is created by setting the run state of the Property instance of the Java class added to the

executable statemachine element.

The following steps are used:

1) Right-click the Property Instance within the executable statemachine element and

select Features -> Set Property Values… from the menu:

2) All the attributes, including the attribute for the result are listed. Using the = operator

set values for age, carType, ncd and offences. A good set of values would be the

same as those used in a data set used for simulating the decision table. The value of

premium should be 0.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

37

3) Click Close

3.7 Run the Simulation

Ensure the following windows are visible (they can be accessed using the Simulate ribbon):

• Simulation Window

• Local Variables

Run the simulation as before by:

1) Select the executable statemachine element on the diagram named State Machine

Simulation.

2) Select Generate, Build and Run from Statemachine drop-down menu. Assuming

there are no build errors, (if errors are present, these are usually typos which can be

corrected) then the state machine will begin to execute:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

38

The local variables are:

Expand the entry named Example1 and note the values of the variables that correspond to

attributes defined in the Java class have been set to the values defined in the Property

instance run state.

3) Enter broadcast GO in the simulation window:

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

39

The local variables have changed to:

NOTE

The value of premium has been set to 450 which is the value returned after executed the

decision table and is the correct result.

4) Enter broadcast Back in the simulation window.

5) Enter broadcast QUIT in the simulation window.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

40

3.8 IMPORTANT Gotcha

When the executable state machine builds for the first time, it copies the code generated for

the DMN from its location into a new folder with the same parent as the ESM Java class:

Therefore, for the first Generate, Build and Run, the folder named QuotationApplication

will be created and the DMN files copied. BUT on second and subsequent simulation runs,

the files are not copied.

What is the impact of this? Quite serious, since if the Decision Table is modified and code

re-generated, simulating the StateMachine does NOT use the changed decision table code,

since the files have been copied already!

The workaround is simple:

1) If the decision table has been modified, then using File Explorer navigation to where

the folder (in our example named QuotationApplication) is located and delete this

folder.

2) Select Generate, Build and Run as usual, and since the folder named

QuotationApplication in our example, does not exist, it will be created and the

decision table files copied, and the simulation will use the updated decision table.

NOTE

The folder named QuotationApplication above is created when the simulation starts (if it

does not exist already) and the name corresponds to the name of the executable

statemachine element selected for the simulation.

If you have chosen a different name for the executable statemachine element then the

folder created will be named according to the name you used for the executable

statemachine element.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

41

4 What to do Next
Having achieved a working integration between a Java based ESM and a Java based DMN,

you could create multiple Property instances, one for each data set used to test the decision

table, setting their run states accordingly. This would provide a thorough test of the

integration:

When the simulation is run, one state machine is created for each instance, and when the

decision table is invoked, the results are return to all instances. The results can be verified

by examining the local variables window:

Initial state

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

42

After transition to State Applying – Example 1, Example 2 & Example 3

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

43

After transition to State Applying – Example 4, Example 5 & Example 6

Should you wish to trigger individual instances so that you can control each instance

separately, then fire a trigger using the following format:

send trigger name to instance name

for example

send GO to example4

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

Dunstan Thomas Consulting Limited, Building 3000, Lakeside North Harbour, Portsmouth, PO6 3EN
+44 (0)23 9282 2254 • info@dthomas.co.uk • www.dthomas.co.uk

Company Number: 8162530

44

You can also use send to send a trigger to all instances (same as broadcast) by using the

format:

send trigger name to all

for example

send BACK to all

5 Conclusion
This document provides a step-by-step tutorial of the integration of DMN and ESM using

Java. This document cannot possibly address all the possibilities of DMN / DMN integration

but I really hope that it gets you started on your DMN / ESM integration.

mailto:info@dthomas.co.uk
http://www.dthomas.co.uk/

